
Model Checking the Information Flow
Security of Real-Time Systems

Christopher Gerking1(B), David Schubert2, and Eric Bodden1,2

1 Heinz Nixdorf Institute, Paderborn University,
Paderborn, Germany

christopher.gerking@upb.de
2 Fraunhofer IEM, Paderborn, Germany

Abstract. Cyber-physical systems are processing large amounts of sen-
sitive information, but are increasingly often becoming the target of
cyber attacks. Thus, it is essential to verify the absence of unauthorized
information flow at design time before the systems get deployed. Our
paper addresses this problem by proposing a novel approach to model-
check the information flow security of cyber-physical systems represented
by timed automata. We describe the transformation into so-called test
automata, reducing the verification to a reachability test that is carried
out using the off-the-shelf model checker Uppaal. Opposed to related
work, we analyze the real-time behavior of systems, allowing software
engineers to precisely identify timing channels that would enable attack-
ers to draw conclusions from the system’s response times. We illustrate
the approach by detecting a timing channel in a simplified model of a
cyber-manufacturing system.

Keywords: Model checking · Information flow · Security · Real time

1 Introduction

Cyber-physical systems [35] are entrusted a fast-growing amount of sensitive
data, but are inherently vulnerable to security breaches such as manipulation
or leakage of information [15,25]. One subtle attack vector are timing chan-
nels [11], allowing attackers to infer sensitive information by observing the sys-
tem’s response times. In the worst case, such hidden flows of information could
even be exploited to manipulate the physical behavior and compromise the safety
of systems. Thus, to make cyber-physical systems secure by design [39], it is
essential to verify their information flow security before they get deployed.

Model-driven engineering is a widely used approach to securing cyber-
physical systems [38], making the software under development accessible to for-
mal verification. A well-established formal definition of information flow security

The stamp on the top of this paper refers to an approval process conducted by the
ESSoS Artifact Evaluation Committee.

c© Springer International Publishing AG, part of Springer Nature 2018
M. Payer et al. (Eds.): ESSoS 2018, LNCS 10953, pp. 27–43, 2018.
https://doi.org/10.1007/978-3-319-94496-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94496-8_3&domain=pdf

28 C. Gerking et al.

is noninterference [26] which requires that the observable behavior of systems
must not depend on secrets. A well-known verification approach for noninter-
ference is bisimulation, checking that a system exhibits the same observable
behavior as a restricted variant of itself that is known to be secure by defini-
tion [19].

Nevertheless, checking the information flow security of cyber-physical sys-
tems is a challenging problem for software engineers because they are faced with
real-time systems, restricted by hard real-time constraints imposed by their phys-
ical environment [12]. Therefore, models of cyber-physical systems are based on
formalisms like timed automata [5], and the real-time behavior of these models
needs to be taken into account during verification to detect leaks like timing
channels. Verification techniques such as model checking of timed automata are
available [4], but involve sophisticated tools that are hard to implement from
scratch. In this paper, we therefore address the problem of applying off-the-shelf
verification tools to check the information flow security of real-time systems.

Bisimulation of real-time systems is known to be decidable by existing verifi-
cation techniques [14]. Nevertheless, previous approaches towards applied verifi-
cation of information flow security have not taken into account real-time behav-
ior [3,17,20,32]. Therefore, they fail to detect leaks such as timing channels
precisely. Related work on the information flow security of timed automata
exists [6,8,13,34,45], but has spent little effort on how to apply tool-supported
model checking techniques in practice. Thus, in summary, none of the previous
approaches fully combines real-time behavior with applied model checking.

In this paper, we fill in these gaps by reducing the check for noninterference
of timed automata to a refinement check, adapting the work by Heinzemann
et al. [30] to the application field of information flow security. This check is
based on model transformations to construct a test automaton [1], introducing a
dedicated location that is only reachable when violating a bisimulation between
the original automaton and a secure-by-definition variant of itself. By model
checking the reachability of these dedicated locations using the off-the-shelf tool
Uppaal [9], we obtain a novel verification technique for the information flow
security of real-time systems. In contrast to related approaches, our work is
based on timed automata, taking into account the real-time behavior of cyber-
physical systems. Unlike other related work, we focus on applied model checking
to meet the needs of software engineering practitioners.

We illustrate the approach using a simplified model of a cyber-manufacturing
system that interacts with a cloud-based service market. The system must not
allow market participants to draw any conclusions about business secrets.

In summary, this paper makes the following contributions:

– We propose a model transformation process, reducing the check for informa-
tion flow security of real-time systems to a model checking problem.

Model Checking the Information Flow Security of Real-Time Systems 29

– At the core of this process, we illustrate the construction of test automata to
check noninterference of timed automata.

– We give a proof of concept by detecting a timing channel in a simplified model
of a cyber-manufacturing system.

Paper Organization: We introduce fundamentals in Sect. 2, and discuss related
work in Sect. 3. In Sect. 4, we describe our approach of checking information
flow security of real-time systems. We give a proof of concept in Sect. 5, before
concluding in Sect. 6.

2 Fundamentals

In this section, we recall timed automata (cf. Sect. 2.1), timed bisimulation (cf.
Sect. 2.2), and noninterference (cf. Sect. 2.3). Based on these fundamental con-
cepts, we introduce our motivating example in Sect. 2.4.

2.1 Timed Automata

The formalism of timed automata [5] is used to model real-time behavior of
stateful systems. A timed automaton is essentially a directed graph containing
a finite set of locations, connected by a finite set of labeled edges. We use the
definition of timed automata by Bengtsson and Yi [10]. Timed automata extend
finite automata by real-valued variables that represent clocks. Clocks are initial-
ized with zero, increase at the same rate, and may be set back to zero by using
resets that can be assigned to edges.

Clock constraints restrict the behavior of an automaton with respect to the
valuation of its clocks. A clock constraint is a conjunction of atomic constraints
of the form x ∼ n or x − y ∼ n, where x and y are clocks, n ∈ N, and ∼ ∈
{≤, <,=, >,≥} [10]. Clock constraints are used as invariants and time guards.
Invariants are assigned to locations. An active location is forced to be left by
firing an edge before the location’s invariant expires. Therefore, invariants have
to be downward closed, i.e., only ≤ and < operators are permitted. Time guards
are assigned to edges. An edge may fire (i.e., it is enabled) only if its time guard
evaluates to true. In addition, edges are labeled with actions, whereas firing an
edge represents the execution of the action its is labeled with. To represent edges
without an action, we refer to τ as the empty action.

Assuming a set C of clocks, a set B(C) of clock constraints, and an alphabet
Σ of actions, the syntax of a timed automaton is defined as follows [10]:

Definition 1. A timed automaton A is a tuple 〈L, l0, E, I〉 where

– L is a finite set of locations,
– l0 ∈ L is the initial location,
– E ⊆ L × B(C) × Σ × 2C × L is the set of edges where ρ ∈ B(C) is the time

guard, μ ∈ Σ is the action, and λ ∈ 2C is the set of clock resets,
– I : L → B(C) assigns invariants to locations.

30 C. Gerking et al.

Uppaal1 [9] is an off-the-shelf model checker for timed automata that is com-
monly applied by software engineering practitioners, and frequently integrated
into domain-specific verification tools [43]. In the scope of this paper, we apply
Uppaal to verify the information flow security of timed automata.

2.2 Timed Bisimulation

Bisimulation is a notion of observational equivalence that requires the observable
behavior of two systems to be indistinguishable. Timed bisimulation is an exten-
sion of bisimulation for real-time systems which is known to be decidable [14].
Intuitively, two systems are equivalent in terms of timed bisimulation if they
execute the same sequences of observable actions in the same time intervals. We
refer the reader to [10] for a formal definition in the context of timed automata.

There are two variants of timed bisimulation. Strong timed bisimulation is
more restrictive as it considers all actions of a system as being observable, includ-
ing τ actions. In the context of our paper, this assumption is too strong because
we consider τ actions as internal and, therefore, not observable. In contrast to
this, weak timed bisimulation ignores the execution of internal τ actions [14]. In
the following, we consider only this weak variant of timed bisimulation between
two timed automata A and B (denoted by A ≈ B), and refer to it as timed
bisimulation for brevity.

2.3 Noninterference

Noninterference was introduced by Goguen and Meseguer [26] to define infor-
mation flow security of deterministic finite automata, such that the publicly
observable behavior must not depend on sensitive information. If so, public
observations never enable an unprivileged actor to distinguish whether or not
sensitive information was processed. In particular, no conclusions are possible
about which sensitive information was actually received. To characterize the sen-
sitivity of information, noninterference is based on a separation between sensitive
(or high) actions ΣH and public (or low) actions ΣL with ΣH , ΣL ⊆ Σ.

For nondeterministic systems such as timed automata, noninterference is fre-
quently defined on the basis of bisimulation [19,34,45]. Noninterference holds
if the publicly observable behavior of a system cannot be distinguished from
a restricted behavior that is secure by definition. To define this property more
precisely, we distinguish between input actions received from the environment,
and output actions sent to the environment. Based on this distinction, noninter-
ference reduces to a bisimulation of the publicly observable behavior between

1. the original system, and
2. a secure-by-definition system with all sensitive input actions disabled.

1 http://uppaal.org

http://uppaal.org

Model Checking the Information Flow Security of Real-Time Systems 31

Disabling sensitive input actions ensures that the secure-by-definition system
behaves as if no sensitive information is ever processed. By disabling only input
actions, we assume that all sensitive information is received from the environ-
ment, and never generated internally without depending on sensitive inputs [29].

To identify deviations only in the publicly observable behavior, non-public
actions need to be hidden from the bisimulation, i.e., treated as non-observable.
In the following definition, \I denotes the disabling of inputs, and / the hiding
of actions, whereas ΣL̄ = Σ \ ΣL is the set of non-public actions.

Definition 2. Timed noninterference holds for a timed automaton A, if and
only if A / ΣL̄ ≈ (A \I ΣH) / ΣL̄.

2.4 Motivating Example

In our approach, we assume timed automata to be embedded in component-
based software architectures, which are commonly used for the software design
of cyber-physical systems [16]. In Fig. 1, we show a software component named
ManufacturingSystem as a model of our example announced in Sect. 1. The compo-
nent embeds a timed automaton that drives the application-level communication
between the system and its environment. The communication is carried out by
means of asynchronous message passing, whereas the set of messages corresponds
to the alphabet Σ. Accordingly, when messages are received, they are buffered
until they are processed by an input action of the automaton. Asynchronous
communication is a characteristic property of cyber-physical systems because
they are often spatially divided and dynamically interconnected over wireless
networks. In Fig. 1, we use / to separate input from output actions.

ManufacturingSystem

market

internal

external

Legend:

Port

Component

LocaƟon

IniƟal
LocaƟon

c ≤ 3

c ≤ 9 c ≤ 7

internal.submit
c < 3 c = 3 /

external.requery

/ market.suborder

external.resubmit

Edge

market.order / internal.query
c := 0

Fig. 1. Example timed automaton of a cyber-manufacturing system

Our example component uses three ports to pass messages. The market port is
used to interact with the service market. Whenever a production order is received
from the market, the internal port is the preferred way to access the product
specification, provided that it is available as an in-house resource. Alternatively,

32 C. Gerking et al.

access to the specification may also be purchased from a business partner over the
external port. The messages passed over the market port are public (represented
by the set ΣL), whereas the messages passed over the internal port are sensitive
(represented by ΣH). In our example, messages passed over the external port are
not further characterized as public or sensitive because information flow needs
to be detected only from the internal to the market port.

In the following, we describe the behavior of the automaton from Fig. 1.
Whenever the automaton is in its initial location and receives an order message
from the market, it sends a query for the product specification over the internal

port. At the same time, it sets the clock c to zero which acts as a timeout. If
the internal port does not provide the specification in terms of a submit message
within three time units (i.e., the company does not possess the specification), a
requery message is sent over the external port to purchase the specification from a
business partner. In this case, the example system assumes that the specification
is provided in terms of a resubmit message within four further time units (c ≤ 7),
i.e., a deadlock caused by an overdue message can never occur. Finally, if the
specification is delivered from either the internal or external port, the system orders
the corresponding subproducts from the market by sending a suborder message
in the time interval c ≤ 9.

However, the system violates timed noninterference because the effective tim-
ing of the public suborder message depends on whether or not the specification
is possessed by the company. If possessed, the specification is provided by the
sensitive internal port, and suborder may be sent when c < 3. Otherwise, when pro-
vided by the external port, the suborder message can only be sent when c ≥ 3. This
deviation represents a timing channel that allows market participants to infer
whether the company possesses the product specification or not. This knowledge
is sensitive information that could be exploited in a future attack to gain access
to the specification. Due to the subtleties of real time, such leaks can easily
remain undetected during software design, and thus require a tool-supported
verification technique.

3 Related Work

In Sect. 3.1, we recall general approaches towards checking information flow secu-
rity, which are complementary to our work. In Sect. 3.2, we discuss related work
on the information flow security of time-dependent systems.

3.1 Complementary Approaches

Unwinding [27] is a traditional verification technique to infer global information
flow security from local properties of individual system actions (e.g., state tran-
sitions). In the context of real-time systems, this approach is hindered by the
infinite, real-valued state space which makes such local properties hard to iden-
tify. Language-based security [42] is concerned with secure information flow at
the level of programming languages, thus using a different model of computation

Model Checking the Information Flow Security of Real-Time Systems 33

compared to our automata-based approach. In this area, type systems are often
used to enforce information flow security of programs statically. Furthermore,
a technique called self-composition has been proposed [7], reducing language-
based security to a logical formulation that is amenable to automated verifi-
cation, similar to our approach in the context of automata-based systems. We
refer the reader to [21,37] for a comparison of information flow security under
different models of computation. Another complementary approach is the one by
Finkbeiner et al. on model checking hyperproperties [18]. Unlike standard safety
or liveness properties, hyperproperties relate different executions of a system.
Thereby, they cover information flow security properties like noninterference.
Whereas hyperproperties involve a novel theory of specification and verification,
our focus is on applied verification using off-the-shelf tools.

3.2 Time-Dependent Information Flow Security

In Table 1, we compare related work on the information flow security of time-
dependent systems against the core characteristics of our approach, which com-
bines dense real-time behavior with applied verification. Furthermore, we build
on automata as the underlying model of computation, which are commonly
used as a natural, well-established modeling approach [36]. Finally, according
to our example given in Sect. 2.4, we focus on application-level modeling, i.e., we
abstract from responsibilities like scheduling.

Table 1. Comparison of related works on time-dependent information flow security

Dense
real-time

Automata-
based

Application
level

Applied
verification

Evans and Schneider [17] ✗ ✗ ✓ ✓

Focardi et al. [20] ✗ ✗ ✓ ✓

Akella et al. [3] ✗ ✗ ✓ ✓

Agat [2] ✗ ✗ ✓ ✗

Giacobazzi and Mastroeni [24] ✗ ✗ ✓ ✗

Rafnsson et al. [40] ✗ ✗ ✓ ✗

Köpf and Basin [32] ✗ ✓ ✗ ✓

Roscoe and Huang [41] ✓ ✗ ✓ ✗

Son and Alves-Foss [44] ✓ ✗ ✗ ✗

Kashyap et al. [31] ✓ ✗ ✗ ✗

Cassez [13] ✓ ✓ ✓ ✗

Lanotte et al. [34] ✓ ✓ ✓ ✗

Benattar et al. [8] ✓ ✓ ✓ ✗

Vasilikos et al. [45] ✓ ✓ ✓ ✗

Barbuti and Tesei [6] ✓ ✓ ✓ (✓)

This paper ✓ ✓ ✓ ✓

34 C. Gerking et al.

The works by Evans and Schneider [17], Focardi et al. [20], and Akella
et al. [3] analyse the security of process algebras. Existing verification techniques
like theorem proving [17] or partial model checking [20] are applied, even in the
context of cyber-physical systems [3]. By using process algebra, the authors dif-
fer from our automata-based approach in terms of their model of computation.
In the context of language-based security, the work by Agat [2], Giaccobazzi and
Mastroeni [24], as well as Rafnsson et al. [40] uses imperative programs as yet
another model of computation. In contrast, the work by Köpf and Basin [32] on
synchronous systems is automata-based and also amenable to applied verifica-
tion. However, all of the above approaches are limited to discrete time, which is
insufficient to capture the real-time behavior of cyber-physical systems.

In contrast, other existing approaches consider dense real-time behavior.
Roscoe and Huang [41] use process algebra and thereby differ from our automata-
based approach. Son and Alves-Foss [44] as well as Kashyap et al. [31] both focus
on scheduling of real-time tasks, i.e., do not address the application level.

In the context of timed automata, Cassez [13] presents a real-time security
property called timed opacity as a generalization of noninterference. The author
proves the undecidability of the verification problem, i.e., is not concerned with
applied verification. Lanotte et al. [33] consider real-time privacy properties of
timed automata, and reduce the verification of such properties to a reachability
analysis [28], similar to this paper. In [34], the same authors consider nonin-
terference of timed automata extended by probabilistic behavior. However, the
application of existing model checking techniques is beyond the scope of their
approach. Benattar et al. [8] enable the synthesis of controllers that ensure non-
interference of timed automata. According to this constructive approach, they
do not consider applied verification as well. Vasilikos et al. [45] address the secu-
rity of timed automata that leak some information intentionally. The authors
propose an algorithm to impose local security constraints on the elements of an
automaton, however, do not enable applied verification using off-the-shelf tools.

Barbuti and Tesei [6] verify noninterference of timed automata. Similar to
our approach, they reduce the verification to a reachability analysis using applied
model checking. However, their approach only checks that sensitive information
does not influence the reachability of locations. This approximation gives rise to
both false positive and false negative errors, and thus is not capable to provide
any security guarantee. Nevertheless, the approach by Barbuti and Tesei [6] is
the only one that resembles the core characteristics of our paper (cf. Table 1).

4 Checking Noninterference of Timed Automata

In the following, we describe our approach of checking the information flow
security of real-time systems. In Sect. 4.1, we give an overview on our approach,
and describe the construction of the underlying test automata in Sect. 4.2.

Model Checking the Information Flow Security of Real-Time Systems 35

4.1 Refinement Checking

We reduce the verification of timed noninterference to a refinement check for real-
time systems as proposed by Heinzemann et al. [30]. The aforementioned work
allows to verify refinement relations between real-time systems to check that an
abstract behavior is correctly refined by a concrete behavior. The authors reduce
the verification to a reachability test [1] that is carried out using model checking
techniques. One possible refinement definition is timed bisimulation, as also used
to define timed noninterference (cf. Definition 2). Thus, in this paper, we adopt
the notion of refinement to check timed noninterference. In Fig. 2, we give an
overview on our approach as an extension of the work by Heinzemann et al. [30].

In step 1 , we transform a timed automaton A, as described in Sect. 2.4,
into an auxiliary automaton Asec that is secure by definition because sensitive
inputs are disabled. This restriction corresponds to the automaton A \I ΣH

from Definition 2. We disable sensitive inputs by removing the corresponding
edges from A. In the context of the motivating example, Fig. 3a depicts the
removal of the edge that processes the submit input over the sensitive internal

port.

Refinement Check

[Error Location
Reachable] [else]

Legend: ArtifactStep

Parallel Test System (Aadj || TA)

Parallel
Composition

Reachability Analysis

Disable
Sensitive Inputs
1

4

5

Adjust System

Automaton Aadj

Automaton A

3

Test Automaton TA

Construct
Test Automaton

Automaton
Asec = A \I ΣH

2

Control/Data Flow

insecure secure

Fig. 2. Reduction of the noninterference check to a refinement check [30]

The resulting automaton Asec enables us to execute a specialized version
of the refinement check for timed bisimulation, as proposed by Heinzemann
et al. [30]. Thereby, we detect cases where a timed bisimulation between the
original automaton A and the secure-by-definition automaton Asec is violated
because A deviates from the publicly observable behavior of Asec. At the core of
the approach is a test automaton [1] that acts as an oracle for the information

36 C. Gerking et al.

flow security of the original automaton. In particular, the test automaton detects
cases in which the behavior of the original automaton violates timed noninterfer-
ence. To this end, step 2 transforms the automaton Asec into a test automaton
TA, introducing a dedicated error location that is reachable when violating timed
noninterference by deviating from the secure-by-definition behavior.

As a challenge for the construction of the test automaton, we need to hide
all non-public actions from the bisimulation (cf. Definition 2) because only devi-
ations in the public behavior are violations of timed noninterference. In Fig. 3b,
we depict those actions that need to be hidden. A natural approach to hide an
action is to remove it from the corresponding edge [6,34], i.e., to replace it by a
τ action. However, removing input actions may lead to an increased nondeter-
minism. The reason is that this approach potentially produces multiple τ tran-
sitions that are all executable on the same condition because they are no longer
distinguishable by their input actions. However, the refinement check proposed
by Heinzemann et al. is restricted to systems with a deterministic transition
function [30], i.e., at most one edge can fire on a certain condition. Therefore,
in contrast to the default test automata for timed bisimulation [30], our test
automata must take responsibility for hiding non-public actions. We describe
the construction of these specialized test automata in the upcoming Sect. 4.2.

c ≤ 9 c ≤ 7

market.order / internal.query
c := 0

internal.submit
c < 3 c = 3 /

external.requery

/ market.suborder

external.resubmit

c ≤ 3

(a) Disabling sensitive inputs

c ≤ 9 c ≤ 7

market.order / internal.query
c := 0

c = 3 /
external.requery

/ market.suborder

external.resubmit

internal.submit
c < 3

c ≤ 3

(b) Hiding non-public actions

Fig. 3. Disabling and hiding of actions in the motivating example

To ensure that the test automaton acts as the oracle for the original automa-
ton, we need to couple both automata with each other. Therefore, step 3 cre-
ates an adjusted automaton Aadj that has the same behavior as A. However, it
synchronizes with the test automaton whenever both execute the same action.
Furthermore, Aadj supports the hiding of non-public actions in the same fashion
as the test automaton. In step 4 , we compose both TA and Aadj in parallel to
enable synchronized execution of the automata. In the final step 5 , the check
for timed noninterference reduces to analyzing the resulting parallel test system
for reachability of the error location. This reachability test [1] is carried out
by means of the Uppaal model checker, using its parallel composition operator
|| to enable the synchronizations between both automata [10]. In the end, the
automaton A is secure in terms of timed noninterference, if and only if the error
location is unreachable on all execution paths.

Model Checking the Information Flow Security of Real-Time Systems 37

4.2 Test Automata Construction

To generate test automata, we adjust the construction schema for timed bisimu-
lation proposed by Heinzemann et al. [30] such that it hides non-public commu-
nication, as demanded by Definition 2. We adopt the notion of a dedicated error
location (named Err in our case) that is reachable if and only if timed nonin-
terference is violated. Figure 4 illustrates our construction schema including the
Err location. We apply this schema for each edge S → S′ of Asec. Our construc-
tion must ensure that TA will 1 accept secure communication (allowed by Asec

and correctly present in the original automaton A), 2 reject insecure commu-
nication (i.e., public communication that is not allowed by Asec but incorrectly
present in A), and 3 detect the absence of communication (i.e., public commu-
nication that is allowed by Asec but incorrectly absent in A). Before going into
details about the three cases, we introduce additional notation used in Fig. 4.
Synchronous input and output actions are denoted by μ? and μ! respectively.
The set Θ(S) includes all actions that are allowed in a location S, i.e., all actions
of outgoing edges of S. The invariant of S is denoted by I(S). In accordance with
Definition 1, ρ is a time guard, and λ is a set of clock resets.

3

2a

2b

1

Fig. 4. Construction schema for test automata

Accepting Secure Communication. The edge labeled with 1 in Fig. 4
ensures that secure communication is accepted by TA. For each edge S → S′

in Asec, we add an edge STA → S′
TA to TA. Asynchronous actions of S → S′

are transformed into synchronous actions to enable synchronization with Aadj

when processing the same messages during parallel composition. Here, a syn-
chronous output action μin! is created from an asynchronous input action μin,
or a synchronous input action μout? is created from an asynchronous output
action μout. The set of clock resets λ is transferred to STA → S′

TA. Finally, we
need to preserve the time intervals in which actions are executed. To that end,

38 C. Gerking et al.

the time guard of STA → S′
TA is the conjunction of the original time guard ρ

and the invariant I(S) of S. Thus, STA → S′
TA is enabled whenever S → S′ is

enabled.

Rejecting Insecure Communication. Insecure communication includes two
cases: 2a executing a public action that is not allowed in a location S because no
outgoing edge is labeled with it, and 2b executing a public action that is allowed
in S, but violates the timing defined in Asec. For case 2a, Fig. 4 introduces an
edge STA → Err for each public action min or mout that is not allowed in S, i.e.,
for all actions in ΣL \ Θ(S). The time guard I(S) of these edges ensures that Err
is reachable only by actions executed during the activity of S. In contrast to the
construction by Heinzemann et al. [30], only public actions make Err reachable.
For the opposite case of non-public communication, we add a loop STA → STA

for each message that is not in ΣL ∪ Θ(S). Thereby, instead of switching to the
Err location, TA hides all non-public actions that are not allowed.

To handle the timing violations of case 2b, we create one more edge STA →
Err labeled with the allowed action μout or μin of S → S′. However, this edge is
enabled exactly at those times when Asec does not allow the action. To this end,
the time guard of the edge is the conjunction of the negated enabling conditions
for all edges S → Si in Asec that execute the same action as S → S′. The
resulting time guard is

∧
i ¬(ρi ∧ I(S)) where ρi is the time guard of S → Si.

Thereby, we ensure that the edge can fire when exceeding the upper bounds of the
time intervals in which the action is allowed to execute, or when falling below the
lower bounds. In contrast to Heinzemann et al. [30], the edge leads to Err only
in case of public messages from ΣL. For non-public messages, analogously to case
2a, we construct a loop STA → STA. This edge has the same enabling conditions,
however, hides the corresponding non-public action instead of switching to Err.

Detecting Absent Communication. Timed noninterference demands that
all public actions executable by Asec are executable by the original automaton
A in the same time intervals. To check such restrictions, Heinzemann et al. [30]
add the constructs labeled with 3 in Fig. 4. We adopt this construction only if
μout or μin is public (i.e., in ΣL). In this case, the location R represents a check
for required communication. Due to the time guard ρ ∧ I(S), it is reachable
during the full time interval in which the edge S → S′ is enabled.

If A preserves the time interval in which Asec can execute the public action,
then the edge R → N is enabled whenever R is entered. The location N rep-
resents a neutral state of the analysis that is reachable whenever the required
public action is properly executed. N has no outgoing edges because the execu-
tion does not have to be further explored from here. Instead, the location S′

TA

is always reachable when N is reachable and ensures regular execution.
If at some time during its interval, the required public action can not be

executed (because A lowers the upper bound or raises its lower bound), then
R → N is not enabled. In this case, the edge R → Err fires by synchronizing
over an auxiliary channel named fallback. Synchronization over this channel is

Model Checking the Information Flow Security of Real-Time Systems 39

always enabled, however, it has the lowest priority compared to all other channels
used for communication. Thereby, Err is only reachable when the required public
communication is absent.

5 Proof of Concept

In this section, we showcase the utility of our approach in the scope of the
example given in Sect. 2.4. To this end, we demonstrate that our technique out-
performs the related work by detecting a timing channel that remains undetected
using the approach by Barbuti and Tesei [6]. We show that our technique rejects
the insecure system, but accepts a mitigated system that is noninterferent.

To verify the information flow security of timed automata, Barbuti and Tesei
check that disabling sensitive actions does not affect the reachability of loca-
tions. In the scope of our example, the corresponding transformation was shown
in Fig. 3a. Clearly, disabling the sensitive submit action does not affect the reach-
ability of locations (compared to Fig. 3b) because all locations are still reachable.
Thus, the timing channel described in Sect. 2.4 remains undetected by the app-
roach, and therefore represents a false negative because the insecure system is
regarded as secure.

In contrast, Fig. 5 illustrates the parallel composition of the adjusted automa-
ton Aadj (Fig. 5a) and the test automaton Ta (Fig. 5b) as proposed in this paper.
As an artifact for reproduction, we provide a corresponding model that is ver-
ifiable by the Uppaal model checker [23]. Due to lack of space, Fig. 5 merges
multiple edges between the same source and target locations into a single edge
with alternative synchronization labels. Furthermore, we omit the names of ports
over which messages are sent or received. Finally, since edges with a conjunction
of actions are not allowed in Uppaal, we use a committed location [10] (labeled
with c in Fig. 5) to divide the order and query actions into two consecutive edges.
Figure 5 also depicts the additional loops added to both automata for hiding
non-public communication, as described for the test automata in Sect. 4.2.

Fig. 5. Parallel test system for the motivating example

40 C. Gerking et al.

In the situation depicted in Fig. 5, the system has already processed the
message sequence order, query, submit (in the time interval c < 3). Since sensitive
inputs are disabled in Ta, it can only execute a loop when processing the sensitive
submit message. Next, the public suborder message to be sent by Aadj corresponds
to case 2a of our construction in Sect. 4.2. Thus, Ta will regard the message
as insecure, and reject it by switching to the Err location. The reason for this
violation is that Aadj sends the public suborder message too early, i.e., in the
time interval c ∈ [0, 3]. Thus, in its current location (cf. Fig. 5b), Ta regards the
message as not allowed and switches to Err.

Figure 6 shows the countermeasures taken to mitigate the timing channel.
In Fig. 6a, we depict the time guard c = 9 added to delay the suborder message.
Consequently, the timing of the message does no longer depend on whether or not
the product specification was provided over the sensitive internal port. Figure 6b
depicts the resulting changes of the test automaton. Since the timing of the
suborder message is now fixed, the Err location is no longer reachable. Accordingly,
our construction correctly identifies the mitigated system as noninterferent.

Fig. 6. Mitigation of the timing channel in the motivating example

6 Conclusions and Future Work

This paper proposes a novel check for the information flow security of real-time
systems given in the form of timed automata. Our approach is based on noninter-
ference as a well-established definition of secure information flow. To provide a
verification technique that applies existing tools and takes into account real-time
behavior, we adapt the work on refinement checking by Heinzemann et al. [30] to
the field of security. We describe the construction of test automata, introducing
a dedicated location that indicates violations of noninterference whenever it is
reachable during execution. Thereby, we reduce the problem to a reachability
test that is supported by model checking techniques used in software engineer-
ing practice. In particular, we apply the well-established Uppaal model checker
for timed automata as our underlying verification engine. Our proof of concept
demonstrates the advantages of our approach by detecting a timing channel that
would remain undetected using the most closely related work.

Model Checking the Information Flow Security of Real-Time Systems 41

The proposed idea provides software engineering practitioners with a tool-
supported verification technique for the information flow security of timed
automata, taking into account specific characteristics of cyber-physical systems
like real-time behavior and asynchronous communication. Thereby, we enable
engineers to identify information leaks such as timing channels early, and ensure
security by design. For cyber-physical systems, this is of vital importance to
avoid product recalls or even safety-critical attacks.

Our approach is part of ongoing work on tracing information flow security in
cyber-physical systems engineering [22]. In future work, we will provide tool sup-
port for our approach in the context of a model-driven software design method
for cyber-physical systems. In particular, to check the information flow security
of hierarchical component architectures, our work needs to be extended to a
compositional verification approach. Thereby, we seek to preserve security when
composing overall software systems from single secure components.

Acknowledgments. The authors would like to thank Johannes Geismann and Marie
Christin Platenius for helpful comments on drafts of this paper.

References

1. Aceto, L., Burgueño, A., Larsen, K.G.: Model checking via reachability testing for
timed automata. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 263–280.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054177

2. Agat, J.: Transforming out timing leaks. In: POPL 2000, pp. 40–53. ACM (2000)
3. Akella, R., Tang, H., McMillin, B.M.: Analysis of information flow security in

cyber-physical systems. Int. J. Crit. Infrastruct. Prot. 3(3–4), 157–173 (2010)
4. Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking in dense real-time. Inf. Com-

put. 104(1), 2–34 (1993)
5. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),

183–235 (1994)
6. Barbuti, R., Tesei, L.: A decidable notion of timed non-interference. Fundamenta

Informaticae 54(2–3), 137–150 (2003)
7. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.

Math. Struct. Comput. Sci. 21(6), 1207–1252 (2011)
8. Benattar, G., Cassez, F., Lime, D., Roux, O.H.: Control and synthesis of non-

interferent timed systems. Int. J. Control 88(2), 217–236 (2015)
9. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL—a tool

suite for automatic verification of real-time systems. In: Alur, R., Henzinger, T.A.,
Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg
(1996). https://doi.org/10.1007/BFb0020949

10. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In:
Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–
124. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27755-2 3

11. Biswas, A.K., Ghosal, D., Nagaraja, S.: A survey of timing channels and counter-
measures. ACM Comput. Surv. 50(1), 6:1–6:39 (2017)

12. Broman, D., Derler, P., Eidson, J.: Temporal issues in cyber-physical systems. J.
Indian Inst. Sci. 93(3), 389–402 (2013)

https://doi.org/10.1007/BFb0054177
https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/978-3-540-27755-2_3

42 C. Gerking et al.

13. Cassez, F.: The dark side of timed opacity. In: Park, J.H., Chen, H.-H.,
Atiquzzaman, M., Lee, C., Kim, T., Yeo, S.-S. (eds.) ISA 2009. LNCS, vol. 5576,
pp. 21–30. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02617-
1 3

14. Čerāns, K.: Decidability of bisimulation equivalences for parallel timer processes.
In: von Bochmann, G., Probst, D.K. (eds.) CAV 1992. LNCS, vol. 663, pp. 302–315.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56496-9 24

15. Chattopadhyay, A., Prakash, A., Shafique, M.: Secure cyber-physical systems: cur-
rent trends, tools and open research problems. In: DATE 2017, pp. 1104–1109.
IEEE (2017)

16. Crnkovic, I., Malavolta, I., Muccini, H., Sharaf, M.: On the use of component-based
principles and practices for architecting cyber-physical systems. In: CBSE 2016,
pp. 23–32. IEEE (2016)

17. Evans, N., Schneider, S.: Analysing time dependent security properties in CSP
using PVS. In: Cuppens, F., Deswarte, Y., Gollmann, D., Waidner, M. (eds.)
ESORICS 2000. LNCS, vol. 1895, pp. 222–237. Springer, Heidelberg (2000).
https://doi.org/10.1007/10722599 14

18. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking Hyper-
LTL and HyperCTL∗. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9206, pp. 30–48. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21690-4 3

19. Focardi, R., Gorrieri, R.: A taxonomy of security properties for process algebras.
J. Comput. Secur. 3(1), 5–34 (1995)

20. Focardi, R., Gorrieri, R., Martinelli, F.: Real-time information flow analysis. IEEE
J. Sel. Areas Commun. 21(1), 20–35 (2003)

21. Focardi, R., Rossi, S., Sabelfeld, A.: Bridging language-based and process cal-
culi security. In: Sassone, V. (ed.) FoSSaCS 2005. LNCS, vol. 3441, pp. 299–315.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31982-5 19

22. Gerking, C.: Traceability of information flow requirements in cyber-physical sys-
tems engineering. In: CEUR Workshop Proceedings, DocSym@MoDELS 2016, vol.
1735 (2016)

23. Gerking, C.: Detection of a timing channel in an UPPAAL model of a cyber-
manufacturing system (2018). https://doi.org/10.5281/zenodo.1034024

24. Giacobazzi, R., Mastroeni, I.: Timed abstract non-interference. In: Pettersson, P.,
Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 289–303. Springer, Heidelberg
(2005). https://doi.org/10.1007/11603009 22

25. Giraldo, J., Sarkar, E., Cárdenas, A.A., Maniatakos, M., Kantarcioglu, M.: Security
and privacy in cyber-physical systems: a survey of surveys. IEEE Des. Test 34(4),
7–17 (2017)

26. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE S&P,
pp. 11–20. IEEE (1982)

27. Goguen, J.A., Meseguer, J.: Unwinding and inference control. In: IEEE S&P, pp.
75–87. IEEE (1984)

28. Gorrieri, R., Lanotte, R., Maggiolo-Schettini, A., Martinelli, F., Tini, S.,
Tronci, E.: Automated analysis of timed security. Int. J. Inf. Secur. 2(3–4), 168–186
(2004)

29. Guttman, J.D., Nadel, M.E.: What needs securing. In: CSFW, pp. 34–57. MITRE
Corporation Press (1988)

30. Heinzemann, C., Brenner, C., Dziwok, S., Schäfer, W.: Automata-based refinement
checking for real-time systems. Comput. Sci. - R&D 30(3–4), 255–283 (2015)

https://doi.org/10.1007/978-3-642-02617-1_3
https://doi.org/10.1007/978-3-642-02617-1_3
https://doi.org/10.1007/3-540-56496-9_24
https://doi.org/10.1007/10722599_14
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-540-31982-5_19
https://doi.org/10.5281/zenodo.1034024
https://doi.org/10.1007/11603009_22

Model Checking the Information Flow Security of Real-Time Systems 43

31. Kashyap, V., Wiedermann, B., Hardekopf, B.: Timing- and termination-sensitive
secure information flow. In: IEEE S&P, pp. 413–428. IEEE (2011)

32. Köpf, B., Basin, D.: Timing-sensitive information flow analysis for synchronous
systems. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS,
vol. 4189, pp. 243–262. Springer, Heidelberg (2006). https://doi.org/10.1007/
11863908 16

33. Lanotte, R., Maggiolo-Schettini, A., Tini, S.: Privacy in real-time systems. Elec-
tron. Notes Theor. Comput. Sci. 52(3), 295–305 (2001)

34. Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Time and probability-based infor-
mation flow analysis. IEEE Trans. Softw. Eng. 36(5), 719–734 (2010)

35. Lee, E.A.: CPS foundations. In: DAC 2010, pp. 737–742. ACM (2010)
36. van der Meyden, R., Zhang, C.: Algorithmic verification of noninterference prop-

erties. Electron. Notes Theor. Comput. Sci. 168, 61–75 (2007)
37. van der Meyden, R., Zhang, C.: A comparison of semantic models for noninterfer-

ence. Theor. Comput. Sci. 411(47), 4123–4147 (2010)
38. Nguyen, P.H., Ali, S., Yue, T.: Model-based security engineering for cyber-physical

systems. Inf. Softw. Technol. 83, 116–135 (2017)
39. Peisert, S., Margulies, J., Nicol, D.M., Khurana, H., Sawall, C.: Designed-in security

for cyber-physical systems. IEEE Secur. Priv. 12(5), 9–12 (2014)
40. Rafnsson, W., Jia, L., Bauer, L.: Timing-sensitive noninterference through com-

position. In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp. 3–25.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-6 1

41. Roscoe, A.W., Huang, J.: Checking noninterference in timed CSP. Formal Asp.
Comput. 25(1), 3–35 (2013)

42. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21(1), 5–19 (2003)

43. Schivo, S., Yildiz, B.M., Ruijters, E., Gerking, C., Kumar, R., Dziwok, S.,
Rensink, A., Stoelinga, M.: How to efficiently build a front-end tool for UPPAAL:
a model-driven approach. In: Larsen, K.G., Sokolsky, O., Wang, J. (eds.) SETTA
2017. LNCS, vol. 10606, pp. 319–336. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-69483-2 19

44. Son, J., Alves-Foss, J.: A formal framework for real-time information flow analysis.
Comput. Secur. 28(6), 421–432 (2009)

45. Vasilikos, P., Nielson, F., Nielson, H.R.: Secure information release in timed
automata. In: Bauer, L., Küsters, R. (eds.) POST 2018. LNCS, vol. 10804, pp.
28–52. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89722-6 2

https://doi.org/10.1007/11863908_16
https://doi.org/10.1007/11863908_16
https://doi.org/10.1007/978-3-662-54455-6_1
https://doi.org/10.1007/978-3-319-69483-2_19
https://doi.org/10.1007/978-3-319-69483-2_19
https://doi.org/10.1007/978-3-319-89722-6_2

	Model Checking the Information Flow Security of Real-Time Systems
	1 Introduction
	2 Fundamentals
	2.1 Timed Automata
	2.2 Timed Bisimulation
	2.3 Noninterference
	2.4 Motivating Example

	3 Related Work
	3.1 Complementary Approaches
	3.2 Time-Dependent Information Flow Security

	4 Checking Noninterference of Timed Automata
	4.1 Refinement Checking
	4.2 Test Automata Construction

	5 Proof of Concept
	6 Conclusions and Future Work
	References

